Reg.No.:						
----------	--	--	--	--	--	--

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

 $[AUTONOMOUS\ INSTITUTION\ AFFILIATED\ TO\ ANNA\ UNIVERSITY, CHENNAI]\\ Elayampalayam-637\ 205,\ Tiruchengode,\ Namakkal\ Dt.,\ Tamil\ Nadu.$

Question Paper Code: 7018

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – MAY / JUNE 2024

Sixth Semester

Electronics and Communication Engineering U19ECV17 - INTRODUCTION TO MEMS

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 =$	$(10 \times 2 = 20 \text{ Marks})$	
Q.No.	Questions	Marks	KL	CO
1.	Define MEMS.	2	K1	CO1
2.	What do you mean by inverse effect of piezo electricity?	2	K2	CO1
3.	Recall the principle of thermal couples.	2	K 1	CO2
4.	What is the difference between sensors and actuators?	2	K2	CO2
5.	List the advantages of MOEMS technology.	2	K2	CO3
6.	Mention the uses of beam splitter in MOEMS technology.	2	K1	CO3
7.	Justify whether the magnetodiodes and magnetotransistors are MEMS devices.	2	K2	CO4
8.	Distinguish between unidirectional and bidirectional magnetic actuator.	2	K2	CO4
9.	What is the primary reason for designing solenoid type MEMS inductor?	2	K2	CO5
10.	Recall the relationship between the contact angle and the applied voltage for the case of electrowetting based fluid flow.	2	K1	CO5

PART – B

		$(5 \times 13 =$		=65 N	65 Marks)	
Q.N 11.		Questions Explain in detail about different types of etching processes preferred during MEMS fabrications. (OR)	Marks 13	KL K2	CO CO1	
	b)	 i. Describe in detail about the principle of Inchworm Technology with suitable diagrams. ii. Describe the role of Inchworm Technology in consumer product applications. 	5	K3	CO1	
12.	a)	Describe in detail about the actuation using shape memory alloys.	13	K3	CO2	
		(OR)				
	b)	Explain in detail about U-shaped horizontal and vertical electro thermal actuator systems.	13	K3	CO2	
13.	a)	Explain the structure and principle of operation of a grating valve device.	13	K2	CO3	
		(OR)				
	b)	Explain the principle of measurement of shear stress by using MOEMS devices.	13	K3	CO3	
14.	a)	Comprehensively discuss the principle of operation of magnetic probe-based storage device. (OR)	13	K3	CO4	
	b)	Explain the construction and operating principle of Magnetoresistive sensor with neat diagrams.	13	K2	CO4	
15.	a)	With the suitable diagrams, explain the principles of the				
		following fluid flow phenomena.	7	K2	CO5	
		i. Dielectrophoresis (DEP)ii. Electroosmosis flow	6	K2	CO5	
		(OR)				
	b)	Explain the construction and working principle of diaphragm based micropumps with neat diagram.	13	K3	CO5	

PART – C

*3			$(1 \times 15 = 15 \text{ Marks})$		
Q.No.		Questions	Marks	KL	CO
16. a)		ruct and explain the structure of MEMS gyroscope and rehend its principle of operation. (OR)	15	K3	CO1
b)	i.	Summarize the process sequences with regard to the facbrication of RF MEMS switches.	7	K3	CO5
	ii.	Explain the principle of operation of a switched-line phase shifter.	8	K3	CO5